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ABSTRACT: Modern computational approaches and machine
learning techniques accelerate the invention of new drugs.
Generative models can discover novel molecular structures
within hours, while conventional drug discovery pipelines
require months of work. In this article, we propose a new
generative architecture, entangled conditional adversarial autoe-
ncoder, that generates molecular structures based on various
properties, such as activity against a specific protein, solubility,
or ease of synthesis. We apply the proposed model to generate
a novel inhibitor of Janus kinase 3, implicated in rheumatoid arthritis, psoriasis, and vitiligo. The discovered molecule was tested
in vitro and showed good activity and selectivity.
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■ INTRODUCTION

The latest advancements in deep learning are propagating into
biomarker development, drug discovery, and drug repurpos-
ing.1−7 The development of a new drug, from the original idea to
the market approval, is a complicated process. It takes many
years and can cost over $2.5 billion, with over a 90% failure rate
in human clinical trials. While the standard drug discovery pipe-
line includes many stages, it is still an open problem to find an
initial set of molecules that would change the activity of a specific
protein or a signaling pathway.8

Researchers can improve the hit rate of new drug candidates
by removing unpromising compounds at early stages with
machine learning models to estimate properties of the com-
pound and guide the drug optimization process.9−11 Machine
learning techniques also allow researchers to learn useful latent
representations of molecules using variational autoencoders,12

graph convolutions,13,14 and graph message passing networks.15

Goḿez-Bombarelli et al.16 used the latent representation of VAE
to optimize chemical properties of encoded molecules using
Bayesian optimization.
Generative adversarial networks (GAN)17 and adversarial

autoencoders (AAE)18 have become prominent in the gen-
erative modeling of structured objects, such as text, speech,
and images.19−21 Generative models, trained on molecular
descriptors, 3D structure, textual notation, or molecular
graphs,16,22−25 can create novel molecular structures with desired
properties, such as the activity against a given target-protein.

Makhzani et al.18 applied supervised adversarial autoencoders
(SAAE) to generate new objects with given properties. The
original model achieved good results with a few simple con-
ditions, but the generation of complex objects (molecular
structures or high-resolution images) requires dozens of complex
conditions with thousands of variations. In this work, we improve
SAAE architecture and demonstrate a significantly higher per-
formance in the generation of novel chemical structures given
complex conditions. Our contribution is 3-fold:

• Wediscuss disentanglement issues in SAAE and show that
SAAE does not have any theoretical guarantees for the
conditional generation.

• We propose an improved model with two different disen-
tanglement approaches and a semisupervised extension.

• We validate our model by generating compounds against
a specific protein and test one generated molecule in vitro.
The discovered molecule (Figure 1) shows good inhi-
bition activity and can be further developed as a pri-
mary hit.
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■ CONDITIONAL ADVERSARIAL AUTOENCODER
Adversarial autoencoders18 are generative models that model
the data distribution pdata(x) by training a regularized
autoencoder. The regularizer forces a distribution of the latent
code q(z) = ∫QE(z|x)pdata(x)dx to match a tractable prior p(z).
In this article, we will only consider deterministic autoencoders:
the encoding distribution QE(z|x) and decoding distribution
PG(x|z) are parametrized by neural networks E and G, respec-
tively, z = E(x) and x = G(z).
Regularization of the latent space is implemented by an

adversarial training procedure17 with the discriminator model
D(z). The discriminator is trained to discriminate between
samples from the latent distribution q(z) and the prior p(z). The
encoder E is trained to modify the latent code so the discrim-
inator can not distinguish the latent distribution from the prior.
This results in a minimax game min maxE D adv , where

 = + −∼ ∼D E x D zlog ( ( )) log (1 ( ))x p z p zadv ( )data (1)

The adversarial training with the reconstruction penalty
constitutes the following optimization task:

 



+ −

− |

∼ ∼

∼

D E x D z

p x G E x
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log ( ( ( )))
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x p z p z

x p

,
( )data

data (2)

The framework of adversarial autoencoders can be extended
to the conditional generation. Consider data points ∈x
coupled with some properties ∈y . The conditional generation
procedure produces samples from the distribution p(x|y) for any
fixed property y. Supervised adversarial autoencoders (SAAE)18

modifies the reconstruction process by concatenating the property
y with the latent code z at the input of the decoder (Figure 2).
The training procedure becomes (new parts are in bold)

 



+ −

− |

∼ ∼

∼ y

D E x D z

p x G E x

min max log ( ( )) log (1 ( ))
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( )

( , )

data

data (3)

In the original article, the authors suggested to generate new
objects by first sampling z ∼ p(z) and then passing the latent
code through the generator x = G(z,y). This process implies
independence of z and y, which is not always true. Sampling from
p(z) can be inconsistent, even if the model perfectly matches the
latent distribution p(z), and the reconstruction works well, as
shown in the Experiments section. Intuitively, this may happen if
the marginal distribution of latent codes is p(z), but for any fixed
y, we get a completely different distribution p(z|y), as illustrated
in Figure 3. In this case, we cannot generate useful samples from

p(z) for a specified y. Instead, we must sample from an intrac-
table distribution p(z|y). To overcome this inconsistency issue,
we introduce two approaches: forcing conditional distributions
p(z|y) to be close to a marginal distribution p(z), and learning
p(z|y) directly.

■ DISENTANGLEMENT OF Z AND Y
In this section, we describe predictive and joint approaches to
disentangle latent codes z and properties y.

Predictive Disentanglement. We estimate the depend-
ence between two random variables by computing their mutual

information

∫
= [ || ]

=

z y p z y p z p y

p z y dzdy

( , ) ( , ) ( ) ( )

( , )log p z y
p z p y

( , )
( ) ( )

where is the Kullback−Leibler divergence. We can promote
the independence between y and z by minimizing this mutual
information. Since the density of the distribution p(z,y) is unknown,
we approximate I(z,y) with a variational distribution q(y|z)
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where y( ) is a constant entropy term, and q is a neural network
trained to estimate p(y|z). Implying that z is obtained from data
points by a deterministic mapping, the regularizer takes the
following form:

= |
|

∼ q y E xmax log ( ( ))
q y E x

x y ppredictive
( ( ))

( , ) data (5)

We optimize this loss in an adversarial manner by first training
a neural network q to extract information about y from z,
and then updating the encoder to eliminate extracted features
from the latent code. We call this method the predictive

Figure 1. A novel molecule generated with the entangled conditional
adversarial autoencoder (ECAAE). It was tested in vitro and showed high
binding affinity and specificity toward the Janus kinase 3 (JAK3) protein.

Figure 3. Motivation for the disentanglement. The marginal
distribution of latent codes is p(z), but conditional distributions differ
from the marginals.

Figure 2. Supervised adversarial autoencoder (SAAE) model.
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disentanglement (Figure 4). The optimization procedure with a
new term becomes (predictive disentanglement is in bold)
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Joint Disentanglement. In the predictive disentanglement,
the variational distribution q(y|E(x)) has to be flexible enough to
capture dependencies between components of y. This can be
challenging. In the Generation of Structural Analogs section, we
use 166-long binary vectors as properties y, which requires a neural
network to estimate a probability of 2166 possible fingerprints.
The predictive model usually assumes conditional indepen-

dence of y components, as it allows us to optimize models
independently for each component. Let us denote the family of
factorized variational distributions as

∏= | | = |
=

Q q y z q y z q y z( ) ( ) ( )
i

d

i
1

l
m
oo
n
oo

|
}
oo
~
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By optimizing in a narrow family of distributions, we will
underestimate the remaining mutual information
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Let us denote the marginal distribution of a property yi as
p(yi). The predictive model will only make marginal dis-
tributions independent from z (q(yi|z) = p(yi)), which does not
imply joint independence: q(y|z) = p(y). Because of this, the
joint distribution can retain arbitrarily complex dependencies of
y and z and will not achieve independence.
We propose a disentanglement technique that avoids

assumptions about q(y|z), by discriminating pairs (z, y) instead
of vectors z. We use the factorized prior p(z)p(y) with labels
independent from latent codes and sample the distribution
q(E(x), y) of real latent codes and their properties. Adversarial
training brings the distribution q(E(x), y) closer to p(z)p(y),
promoting independence. We call this method the joint
disentanglement (Figure 5)
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Comparing Joint and Predictive Disentanglement.We
introduced two methods of promoting independence between
z and y. In our experiments, we found the joint disentanglement
to be less stable than the predictive disentanglement at the
beginning of training. It also requires a careful hyperparam-
eters tuning. The predictive disentanglement, in contrast, is more
stable and converges without an exhaustive hyperparameter search.
However, as we mentioned above, the predictive disentanglement
cannot achieve complete independence of z and y in complex
cases. When working together, the predictive disentanglement
forces the independence of marginals p(yi|z) = p(yi), while the
joint disentanglement reduces the remaining mutual informa-
tion. As a result, we get a more stable technique that produces
better results, as shown in the Experiments section. We call the
method with both techniques the combined disentanglement.
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data
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■ ENTANGLED REPRESENTATION
The disentanglement of latent codes and labels is a powerful
technique, but it imposes many constraints on the structure of a
latent representation andmay have a negative effect on the inter-
pretability of latent features. For example, in ImageNet pic-
tures, the distribution of object colors depends on a class label:
cats usually have completely different colors than cars or trees.
To improve the structure of the latent code, we add a depen-
dence between y and z.
The probabilistic model becomes p(y,z,x) = p(y)p(z|y)p(x|

y,z). In this work, we learn p(z|y) as a multivariate normal
distribution with a diagonal covariance matrix parametrized by
neural networks μθ and Σθ, μ| = | Σθ θp z y z y y( ) ( ( ), ( )), with θ
optimized during training. To ensure that the parametrized
posterior p(z|y) matches the embeddings of the data, we train
a discriminator to distinguish samples from q(E(x)|y) and

μ| Σz y y( ( ), ( )). We also pass the property y to the dis-
criminator to recognize which distribution is used as a reference
for a specific object:

  



+

− − |

|∼ ∼ ∼

∼

D E x y

D z y p x G E x y

min max log ( ( ), )

log(1 ( , )) log ( ( ( ), ))

y
E G D q

x y p y p y z p z

x y p

, ,
( , ) ( ) ( )

( , )

data

data (11)

The discrimination between two learnable distributions is an
unstable procedure, as for rare values of y, the discriminator
poorly estimates the density q(E(x)|y). To stabilize the training
procedure, we apply the reparameterization trick, deterministi-
cally transforming latent codes into samples of the standard dis-
tribution, z ̅ = gθ(z,y) and discriminating samples from p(z)̅p(y)
and q(gθ(E(x),y),y). Now, the distribution p(z)̅p(y) does not
depend on parameters θ and is fixed during training. For the
normal distribution, the reparameterization trick becomes

μ= Σ −θ θ θ
−g z y y z y( , ) ( )( ( ))1/2 and a prior p(z)̅ is a standard

normal distribution I(0, ). The optimization procedure after
reparameterization becomes


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Figure 4. Predictive disentanglement. We first train q(y|z) to extract
property y from the latent code (solid red line) and then modify z to
confuse the predictor (dashed blue line).

Figure 5. Joint disentanglement.Wediscriminate pairs (z, y) of latent codes
and properties from pairs (ϵ,y), where ϵ ∼ I(0, ) are noise samples.

Molecular Pharmaceutics Article

DOI: 10.1021/acs.molpharmaceut.8b00839
Mol. Pharmaceutics 2018, 15, 4398−4405

4400

http://dx.doi.org/10.1021/acs.molpharmaceut.8b00839


Since y and z ̅ are sampled independently, the discrimination
procedure can be interpreted as a joint disentanglement of the
reparameterized latent code and its property y. This leads us to
the final idea to replace the joint disentanglement with the com-
bined disentanglement. We call this model an entangled con-
ditional adversarial autoencoder (ECAAE) model (Figure 6 and
Chart 1). The underlying optimization task is



 
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− |
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θ θ
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■ SEMISUPERVISED EXTENSION

Inmedicine, and especially in drug discovery, we rarely know the
whole set of properties. To fill in these missing values, one has to
conduct expensive in vitro or in vivo experiments. One example
of this property would be the activity of a molecule against a
specific protein. Other properties may require computationally
expensive simulations, such as molecular dynamics or docking.
Utilization of partially labeled data sets should result in an
improved performance of a drug discovery pipeline.

Proposed models can be naturally extended for a partially
labeled data by training an imputer model h(ŷ|x) that approx-
imates the values of unknown properties. During backpropaga-
tion, gradients for h are passed through both known and unknown
positions, allowing the imputer to train jointly with the gen-
erative model. The vector with imputed properties is computed
as m·y + (1−m)·ŷ, where m is a binary mask vector with zeros in
positions corresponding to unknown labels.

■ RELATED WORK

The generation of new objects according to a certain condition is
a challenging yet popular task that widely employs modern gen-
erative models. The most commonly used generative frame-
works are generative adversarial networks (GAN),17 variational
autoencoders (VAE),12 and adversarial autoencoders (AAE).18

The conditional generative models with some restrictions can be
obtained by adding a label to the input of the generator network.
The conditional GAN27 also passes a property to the discrimi-
nator. If the generated object does not have a given property, the
discriminator will identify this object as fake. Supervised AAE18

adds a condition to the generator’s input, which, as discussed
above, is not sufficient for a true conditional generation. In a
similar way, variational autoencoders (VAE) were extended to
the conditional generation by Sohn et al.26

To address disentanglement, Cheung et al.28 regularized the
cross-covariance matrix between the property and the latent
code by encouraging it to be close to the identitymatrix. Another
approach based on the domain adaptation technique29 was pro-
posed by Lample et al.21 and Creswell et al.30 This method resem-
bles our predictive disentanglement method. Mathieu et al.31 uses
a method similar to the joint disentanglement on the produced
objects, instead of the latent codes directly. This approach is not
directly applicable for discrete objects, as it requires passing the
gradient through sampling from discrete random variables.
Deep generative architectures have been used to discover new

molecules with specified properties. Zhou32 applied graph con-
volutions to generate new chemical structures from graph repre-
sentations. Segler et al.33 and Gupta et al.34 implemented RNN
on the SMILES representation.35,36 VAE and AAE-based
models10,22,37 were used for the generation of molecular struc-
tures. Guimaraes et al.38 and Putin et al.39,40 combined GAN
with the reinforcement learning objective on the generator net-
work in order to generate molecules with specific properties.
Olivecrona et al.41 formulated the SMILES sequence generation
process in terms of the reinforcement policy optimization.
Deep information bottlenecks42,43 also require minimization

of the mutual information. Our combined disentanglement
extends and stabilizes the minimization ofMI and can be used to
improve current information bottleneck techniques.

■ EXPERIMENTS

Data. For our experiments, we used Clean Leads molecules
from the ZINC database.44 We performed an additional filtering
to optimize the data set toward the potential drug candidates
and increase the hit rate of novel drug compounds. For this
purpose, we removed not drug-like molecules, charged
molecules, and those that contained atoms other than C, N, S,
O, F, Cl, Br, or H. The remaining set of molecules was filtered
with additional drug-likeness filters to exclude toxic and insol-
uble structures. The final data set contained roughly 1.8 million
molecules encoded as strings in the form of canonical SMILES.

Figure 6. Entangled model. We encode an input x into a latent code z.
We parametrize μ| ∼ Σθ θ θp z y y y( ) ( ( ), ( )) and perform the repar-
ameterization trick to obtain z.̅ We then apply disentanglement
techniques to z.̅

Chart 1
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We parsed SMILES notations to separate atoms as individual
tokens. This led to a vocabulary of size 30, which contained
atoms, SMILES-specific syntax elements, and special tokens.
The median length of the token sequence was 36 tokens, the
maximum length was 57.
Training Details.Themodel was implemented in PyTorch.45

We used a recurrent encoder and decoder with two LSTM layers
of 256 units each. Hidden and cell states from the last time step
of the encoder were linearly mapped onto a 64-dimensional
space that we used as an embedding of the input sequence. The
initial state of the decoder was obtained by a linear transfor-
mation from the embedding to the hidden and cell states of the
recurrent decoder. At training time, we used the teacher forcing
algorithm.46 At evaluation time, we sampled tokens from the
posterior distribution at each time step.We trainedmodels using
RMSProp47 with an initial learning rate of 0.01, halving it after
each 50 000 optimization steps. We used weight decay of 10−5

for gθ and 10
−6 for all other components. We used mini-batches

of size 512 and trained all models for roughly 200 000 updates,
which was sufficient for the model to converge. D, q, and h
networks were represented by fully connected networks with
two hidden layers of size 128. The network for μθ and Σθ was a
fully connected network with 3 hidden layers of size 128. We
tried different schedules for adversarial training and decided to
use 4 updates of D, q, and h for each update of E, G, μθ and Σθ.
Generation of Structural Analogs. In the first experiment,

we applied proposed models to generate structural analogs of
known potent molecules. We measured the similarity between
compounds by comparing their fingerprints (feature vectors
describing the molecular structure with each bit of the
fingerprint describing the presence or absence of different
molecular substructures, such as acidic groups or aromatic rings).
We trained conditional models to generate molecules using 166-
bit long molecular access system (MACCS) binary fingerprints.
To produce structural analogs of existing drugs, we generated
10 000 SMILES strings with each model by conditioning them
on fingerprints that were excluded from the training data set.
We report Tanimoto similarity (Jaccard index for binary

vectors) and Hamming distance between fingerprints of gen-
erated molecules and molecules used as a condition. We also
report the percentage of molecules that exactly matched the
condition value. Results in Table 1 suggest that the entangled

representation satisfies conditions more often than other models.
To compare different disentanglement techniques, we estimated
mutual information (MI) between z and y using the mutual
information neural estimation (MINE)method.48 Results suggest
that the predictive disentanglement eliminates more information

than the joint disentanglement. However, as suggested in the Joint
Disentanglement section, the predictive model cannot eliminate
all mutual information, as it fits the predictor in a class of fully
factorized distributions. Combining both methods halved the
remaining MI. Finally, adding the predictive disentanglement to
the entangled model also reduced the MI.
We also evaluated our models for diversity of generated mol-

ecules and generated 100 compounds for each fingerprint from
the test set. Results reported in Figure 7 suggest that the diversity
of generated structures uniformly improves for all proposed
models.

We experimented with models conditioned on a more com-
plex representation, Morgan49 fingerprint of length 2048 and
radius 4. With this input, all models showed similar perform-
ance: Tanimoto 0.8, Hamming 160, and an exact match of 60%.
Since the largeMorgan fingerprint almost uniquely describes the
molecule, the decoder is likely to ignore the latent code, using
only the fingerprint itself to generate the compound. This exper-
iment suggests that the proposed ECAAE model is useful for
moderate-size fingerprints that describemolecules incompletely.

Continuous Properties.We also evaluated the performance
of our models on continuous properties: lipophilicity (logP) and
synthetic accessibility (SA),50 obtained from RDKit.51 The ease
of synthesis (low SA) is a desirable attribute of any prospective
lead, while low logP is an important property of a potential oral
drug candidate. For trained models, we jointly sampled logP and
SA from the test data set and measured the Pearson correlation
coefficient ρ between specified conditions and obtained prop-
erties of generated molecules. We removed generated molecules
that were also present in the training data set when computing ρ.
Results in Table 2 suggest that the entangledmodel balanced the

quality of both logP and SA, while other models concentrated on
the simpler property, logP. Table 3 contains examples of gen-
erated molecules for extreme values of the properties. On this

Table 1. Performance of Models Trained with Different
Disentanglement Techniques Using Fingerprint Vectors as
the Conditiona

disentanglement
Tanimoto

(%)
Hamming

(%)
exact
(%)

remaining MI
(%)

no 80.0 10.49 4.4 2.75
predictive 86.2 7.13 11.4 0.64
joint 88.7 5.78 17.4 1.56
combined 91.8 4.18 27.8 0.32
entangled, no predictive 93.5 3.31 40.9 2.51
entangled 93.6 3.28 41.3 1.30
aNotice the large gap between the model with no disentanglement
(corresponding to ref 18) and other models.

Figure 7. Average number of unique molecules (out of 100) for
different Tanimoto score thresholds. Results show uniform contribu-
tion of different components across all thresholds.

Table 2. Performance for Continuous Propertiesa

disentanglement logP, r SA, r

no 0.088 ± 0.005 0.004 ± 0.006
predictive 0.661 ± 0.005 0.060 ± 0.01
joint 0.432 ± 0.006 0.034 ± 0.01
combined 0.654 ± 0.004 0.113 ± 0.003
entangled 0.613 ± 0.004 0.431 ± 0.005

aWe report the Pearson correlation r between the actual value for the
generated molecules and the requested one.
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data set, the difference between different disentanglement
techniques is much lower than on MACCS fingerprints. This is
presumably due to less interdependence between logP and SA
than between 166 bits of the fingerprint, which was the limiting
factor for the predictive disentanglement.
Semisupervised Data. To evaluate the semisupervised

models, we computed the binding energy of 140 000 molecules
from the AID1022 bioassay to the leukemia-related protein
MCL1 with AutoDock Vina.52 The binding energy E is an
important value that shows how well a molecule can fit in an
active site of a protein. The large negative value of E corresponds
to the high binding affinity. We also added logP and SA values
described in the previous section to the properties. The
generation results are reported in Table 4. In the semisupervised

scenario, the entangled model often satisfies all three conditions,
while other models seem to ignore SA and the binding energy.
We also evaluated the coefficient of determination R2 of the
imputation quality h(ŷ|x) and observed it to be similar for all
models with values of 0.99 for logP, 0.95 for SA, and 0.6 for E.
Results suggest that the auxiliary task of predicting values of

the condition helps improve the conditional generation by
stabilizing the encoder training for most of the models. In this
experiment, the entangled model was able to satisfy conditions
significantly better than the others. Comparing different
disentanglement techniques, the combinedmodel compromised
the performance on logP for the better statistics on E. We can
also see that the joint disentanglement was not able to capture
the correlation between different properties components.
Finally, we generated a few molecules conditioned on

properties of the molecule with the lowest binding energy in
the data set: E = −11.1, logP = 3.95, and SA = 1.8. Interestingly,
two of the generated molecules had a binding energy of E =
−11.7, demonstrating higher binding affinity toward the target.
The simulated position of the generated molecule in the active
site of the MCL1 protein is shown on Figure 8.
In Vitro Validation. In this section, we apply our model to

the drug discovery pipeline by generating a selective inhibitor of
a Janus kinase 3 (JAK3). The Janus kinase (JAK) family contains

four members, JAK1−3 and TYK2, with a different therapeutic
significance. JAK3 is a promising biological target against
rheumatoid arthritis, psoriasis,53−55 alopecia,56 and vitiligo.
Currently, there are more than 10 novel small-molecule JAK
inhibitors with an improved selectivity in different stages of
clinical trails;57−59 therefore, we are mainly focused on selective
JAK3 kinase inhibitors.
To discover a selective compound, we collected a database of

known inhibitors of JAK2 and JAK3 from the ChEMBL60

database and trained a semisupervised entangled AAE model
conditioned on the activity of molecules for JAK2 and JAK3.
We specified high activity against JAK3 and low activity against
JAK2 as a condition. We generated 300 000 molecules and
passed them through a series of filters, including molecular
docking,52 prediction of side effects and chemical properties.
This reduced the number of molecules to roughly 5000. Selected
molecules were used for simulation of molecular dynamics,
which resulted in a set of the 100most promisingmolecules. Out
of these molecules, medicinal chemists selected the most
promising molecule, according to their experience. The chosen
molecule was synthesized and tested in vitro against JAK2 and
JAK3 as well as two other kinases, B-Raf and c-Raf. The activity
was measured in terms of IC50, a concentration of an inhibitor at
which the enzyme is at the half of its maximal activity. A
molecule is considered an initial hit if its IC50 against a target
protein is less than 10 μM. The discovered molecule, presented
in Figure 1, was shown to be active for JAK3 (IC50 = 6.73 μM)
and inactive for JAK2 (IC50 = 17.58 mM), B-Raf (IC50 =
85.55 μM), and c-Raf (IC50 = 64.86 μM). Dose−response
curves are shown in Figure 9.

■ CONCLUSION
In this work, we introduced an ECAAE with several disen-
tanglement techniques to improve the generation quality. We
applied our model to a generation of molecules with specified
property descriptors, solubility, and synthetic accessibility

Table 3. Generated with Entangled Model Molecules for Extreme Values of logP and SAa

aThe left molecule has good logP and is easy to synthesize, while the bottom right is less soluble and harder to obtain.

Table 4. Performance of Semisupervised Models on the
Partially Labeled Binding Energy Dataset in Terms of the
Pearson Correlation r between the Requested Value and the
Generated One

disentanglement logP, r SA, r E, r

no 0.311 ± 0.01 0.0522 ± 0.009 0.02 ± 0.04
predictive 0.687 ± 0.006 0.0893 ± 0.008 0.063 ± 0.05
joint 0.595 ± 0.007 0.0838 ± 0.008 0.109 ± 0.04
combined 0.677 ± 0.007 0.0896 ± 0.007 0.116 ± 0.04
entangled 0.804 ± 0.005 0.593 ± 0.007 0.406 ± 0.04

Figure 8. Position of the generated molecule in the active site of the
MCL1 protein. This molecule has lower binding energy than any other
molecule in the training set.
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scores. We also conditioned the model on target-specific
properties, such as the binding energy or IC50. ECAAE dis-
covered a promising hit compound with high selectivity against
the JAK3 isoform over JAK2 and RAF kinases. The proposed
architecture can be used to generate novel molecules with prom-
ising scaffolds. These results suggest that ECAAE can be inte-
grated into the automated drug discovery pipelines to generate
large sets of initial hypotheses for drugs in multiple disease areas.
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